If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-11x-23=0
a = 4; b = -11; c = -23;
Δ = b2-4ac
Δ = -112-4·4·(-23)
Δ = 489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{489}}{2*4}=\frac{11-\sqrt{489}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{489}}{2*4}=\frac{11+\sqrt{489}}{8} $
| 5x-17=14-5x | | 0.2^2-0.2^3x-1=0 | | 4x³-4x²-16x+24=0 | | 13s-20=-9+s+13s | | t^2-7t+16=t | | 18+6c+16c=-12+17c | | 9x-x-4=0 | | v+9=11 | | x+6/4=12 | | 6(c-73)=78 | | -0.9k=5.04 | | h-9=17 | | (x-13)=-3 | | 4m-3(5+m)=20 | | 10x²+25x+90=0 | | 8(a-73)=78 | | -0.6k-16.09=0.3k-11.05 | | 14x-5x^2=-7 | | 8x−8+5x+25=180 | | 4m-3(5-m)=20 | | 5÷u=6 | | -9j=-17-8j | | 2x+5=3x- | | a/3=(a+4)/5 | | 84=4(a-68) | | 19+4f=-f-16 | | 1/2(x+2)=35 | | 4/11=z/55 | | 8x−8=5x+25=180 | | 9z-14=67 | | 5x-13=3x-3 | | -6y-y=2(y-10) |